Лекция 3
ГЛАВА 3. Функции
Что мы расскажем:
· Объявление функций
· Параметры по умолчанию
· Именованные параметры
· Функции расширения
· Инфиксные функции
· Операторы Infix
Функции Kotlin почти такие же, как методы Java, хотя по поведению они ближе к функциям в JavaScript, потому что в Kotlin функции - это больше, чем просто именованный набор операторов. В Котлине функции - это первоклассные граждане; вы можете использовать функцию везде, где вы можете использовать переменную. Вы можете передавать их в качестве параметров другим функциям, а также можете возвращать функции из других функций. Но прежде чем мы углубимся в эту тему, нам нужно начать с основ функций Kotlin - например, с того, как они объявляются, как они обрабатывают параметры, насколько они отличаются (или похожи) от методов Java, а также от пары других подробностей. Это то, что мы рассмотрим в этой главе.
Объявление функций
Функции можно записывать в трех местах. Вы можете записать их 
(1) внутри класса, как методы в Java - они называются функциями-членами; 
(2) внешние классы - они называются функциями верхнего уровня; и 
(3) они могут быть записаны внутри других функций - они называются локальными функциями. 
Независимо от того, где вы поместите функцию, механизм ее объявления не сильно изменится. Основная форма функции следующая:
fun functionName ([параметры]) [: type] {
 Утверждения
}

Функция объявляется с использованием зарезервированного слова fun, за которым следует идентификатор, который является именем функции. Имя функции включает круглые скобки, в которых вы можете объявить необязательные параметры. Вы также можете объявить тип данных, которые будет возвращать функция, но это необязательно, поскольку Kotlin может определить тип возвращаемого значения функции, просто глядя на объявление тела функции. Далее следует пара фигурных скобок с некоторыми операторами внутри тела функции.
Вы должны давать своим функциям имена, следуя тем же правилам, что и при написании методов Java, а именно: имя функции 
(1) не должно быть зарезервированным словом; 
(2) не должно начинаться с числа; и 
(3) не должны содержать специальных символов. 
И, наконец, со стилистической точки зрения, его имя должно содержать глагол или что-то, обозначающее действие - в отличие от того, когда вы называете переменную, в которой имя содержит существительное.
В листинге 3-1 показано базовое объявление функции, которая принимает параметры String и Int.
Для сравнения в листинге 3-3 показан эквивалентный код Java для листинга 3-1.
Листинг 3-1. Функция displayMessage
fun displayMessage (msg: String, count: Int) {
 var counter = 1
 while (counter ++ <= count) {
 рrintln (msg)
 }
}

DisplayMessage () в листинге 3-1 - непродуктивная функция; он ничего не возвращает - обратите внимание на отсутствие ключевого слова return в теле функции. В Java, когда функция ничего не возвращает, мы все равно указываем, что возвращаемый тип недействителен (см. Листинг 3-3). В Kotlin, однако, нам не обязательно этого делать, поскольку Kotlin может выполнять вывод типов - он может понять это сам. Но в качестве академического упражнения давайте подробно перепишем листинг 3-1, чтобы полностью сообщить компилятору, какой тип возвращаемого значения имеет displayMessage (). См. Пример кода в листинге 3-2.
Листинг 3-2. displayMessage с явным возвращаемым типом
fun displayMessage (msg: String, count: Int): Unit {
 var counter = 1
 while (counter ++ <= count) {
 рrintln (msg)
 }
}

Единственное различие между листингами 3-1 и 3-2 - это тип возвращаемого значения Unit функции displayMessage (). Unit соответствует void Java.
Листинг 3-3. DisplayMessage в Java
public class DisplayMessage {
 public static void main (String [] args) {
 displayMessage («Привет», 3);
 }
 static void displayMessage (String msg, int count) {
 int counter = 1;
 while (counter ++ <= count) {
 System.out.println (msg);
 }
 }
}

Чтобы вызвать функцию displayMessage (), мы вызываем ее по ее имени и передаем соответствующие параметры, как показано в листинге 3-4.
Листинг 3-4. Вызов функции displayMessage
fun main (args: Array <String>) {
 displayMessage («Привет», 3) ➊ ➋
}
fun displayMessage (msg: String, count: Int) {
 var counter = 1
 while (counter ++ <= count) {
 рrintln (msg)
 }
}

➊ "Hello" передается аргументу msg displayMessage ()
➋ 3 передается аргументу счетчика displayMessage (); как и в Java, аргументы, передаваемые функции, сопоставляются с ее параметрами в том порядке, в котором они были определены, начиная слева направо.
Чтобы сделать функции продуктивными (что-то возвращать), просто поместите оператор return где-нибудь в теле функции и объявите тип возвращаемого значения функции. См. Пример в листинге 3-5.
Листинг 3-5. getSum, продуктивная функция
fun main (args: Array <String>) {
 рrintln (getSum (listOf (1,2,3,4,5,6)))
}
fun getSum (values: List <Int>): Int {// возвращаемый тип - Int
 var total = 0;
 for (i in values) total += i
 return total // возвращаемое значение
}
Вы можете вернуть что угодно из функций; мы не ограничены базовыми типами. См. другой пример в листинге 3-6.
Листинг 3-6. Использование пар в качестве возвращаемого типа
fun bigSmall (a: Int, b: Int): Pair <Int, Int> {➊
 if (a> b) return Pair (a, b) ➋
 else {
 return Pair (b, a) ➌
 }
}
fun main (args: Array <String>) {
 var (x, y) = bigSmall (5,3) ➍
 рrintln (х)
 рrintln (у)
}

➊ Эта функция сообщает компилятору, что возвращает Pair. Пара - это класс данных, который представляет, ну, общую пару. Если вы раньше использовали Python, это может напомнить вам кортежи.
➋ Если параметр a больше, чем b, мы создаем пару, используя параметр a в качестве первого компонента и b в качестве второго компонента, а затем возвращаем его вызывающей стороне.
➌ Если параметр a меньше b, то мы создаем пару, используя параметр b в качестве первого компонента и a в качестве второго компонента, а затем возвращаем его вызывающей стороне.
➍ Пара может быть возвращена двум именованным переменным в левой части оператора присваивания. Это деструктурирующее объявление позволяет нам сохранять сразу несколько значений для нескольких переменных. В этом случае переменная x получит первый компонент возвращенной пары, а переменная y получит второй компонент пары.
Функции одного выражения
Ранее в этой главе мы говорили, что функции следуют базовой форме
fun functionName ([параметры]) [: type] {
 утверждения
}

В Kotlin есть вторая форма написания функций, которая позволяет использовать более сжатый синтаксис. Бывают ситуации, когда мы можем опустить 
(1) оператор return; 
(2) фигурные скобки; и 
(3) тип возвращаемого значения в целом. 
Эта вторая форма называется функциями одного выражения.
Как вы, возможно, догадались из ее названия, функция содержит только одно выражение, как показано в фрагменте кода здесь:
fun sumInt(a: Int, b: Int) = a + b
В одной функции выражения опускается пара фигурных скобок, а вместо нее используется оператор присваивания. Ему также больше не нужен оператор return, потому что выражение в правой части присваивания автоматически становится возвращаемым значением. Наконец, такой функции не требуется явный тип возвращаемого значения, поскольку компилятор может вывести тип, возвращаемый из значения выражения. Отсутствие явного возвращаемого типа ни в коем случае не является жестким правилом. Вы все равно можете написать явный возврат, если вам это нравится, например:
fun sumInt (a: Int, b: Int): Int = a + b
Аргументы по умолчанию
Параметры функции могут иметь значения по умолчанию в Kotlin, что позволяет вызывающей (функции) опускать некоторые аргументы на сайте вызова. Значение по умолчанию можно добавить в сигнатуру функции, присвоив значение параметру функции. Пример такой функции показан в листинге 3-7.
Листинг 3-7. connectToDb
fun connectToDb(hostname: String = "localhost",
 username: String = "mysql",
 password:String = "secret") {
}

Обратите внимание, что «localhost», «mysql» и «secret» были присвоены имени хоста, имени пользователя и паролю соответственно. Эта функция может быть вызвана следующим образом:
connectToDb("mycomputer","root")
Все аргументы для вызова функции connectToDb () можно опустить, поскольку все ее параметры имеют значения по умолчанию. Но в данном случае мы опустили только третий.
Мы даже можем вызвать функцию, не передавая ей никаких аргументов, например:
connectToDb ()
Способность Kotlin предоставлять функциям аргументы по умолчанию позволяет нам избежать перегрузки функций. Мы не могли этого сделать в Java, поэтому пришлось прибегнуть к перегрузке методов. Перегрузка функций все еще возможна в Kotlin, но у нас, вероятно, будет меньше причин для этого сейчас, и все благодаря параметрам по умолчанию.
Именованные параметры
Вернемся к листингу 3-7. Если мы вызовем эту функцию и предоставим все аргументы, вызов может выглядеть так:
connectToDb («нептун», «юпитер», «сатурн»)
Это правильный вызов, потому что все параметры connectToDb () являются строками, и мы передали три аргумента String. Вы можете определить проблему? По сайту вызова неясно, какое из них является именем пользователя, именем хоста или паролем. В Java эта проблема неоднозначности была решена различными обходными путями, включая комментирование сайта вызова.
connectoToDb (/ /* hostname*/, "neptune,
/* username*/ "jupiter",
 /*password*/ "saturn")

Нам не нужно делать это в Kotlin, потому что мы можем назвать аргумент на сайте вызова.
connecToDb (hostname = "neptune",
 username = "юпитер",
password = "сатурн")

Важно помнить, что, когда мы начинаем указывать имя аргумента, нам необходимо после этого указать имена всех аргументов, чтобы избежать путаницы.
Кроме того, Котлин не позволил бы нам компилировать, если бы мы это сделали. Например, такой вызов
connectToDb (hostname = "neptune",
 username = "юпитер",
 "Сатурн")

не допускается, потому что после того, как мы назовем второй аргумент (имя пользователя), нам нужно будет указать имя всех аргументов, которые идут после него. И в приведенном выше примере вызова указан второй аргумент, но не третий. С другой стороны, такой вызов
connectToDb ( "нептун",
 username = "юпитер",
 password = "сатурн")

позволено. Это нормально, что мы не назвали первый аргумент, потому что Kotlin обработал бы это как обычный вызов функции и использовал бы позиционное значение аргумента для разрешения параметра. А потом мы назвали все остальные аргументы.
Переменное количество аргументов
Функции в Kotlin, как и в Java, также могут принимать произвольное количество аргументов. Синтаксис немного отличается от Java, вместо трех точек после типа ... мы используем ключевое слово vararg. В листинге 3-8 показан пример объявления и вызова функции vararg.
Листинг 3-8. Демонстрация функции переменного аргумента
fun<T> manyParams(vararg va : T) { ➊
 for (i in va) { ➋
 println(i)
 }
[bookmark: _GoBack]}
fun main(args: Array<String>) {
 manyParams(1,2,3,4,5) ➌
 manyParams("From", "Gallifrey", "to", "Trenzalore") ➍
 manyParams(*args) ➎
 manyParams(*"Hello there".split(" ").toTypedArray()) ➏
}
➊ Ключевое слово vararg позволяет нам принимать несколько параметров для этой функции. В этом примере мы объявили функцию с типизированным параметром; это общий. Нам не нужно было объявлять его универсальным для работы с переменными аргументами - мы просто решили, что он может работать с множеством типов.
➋ Это простой механизм цикла, позволяющий распечатать каждый элемент аргумента.
➌ Мы можем передавать Ints, и мы можем передавать столько, сколько захотим, потому что manyParams принимает переменное количество аргументов.
➍ Он также работает со строками.
➎ Как и в Java, мы можем передать массив функции, которые принимает переменные аргументы. Нам нужно использовать оператор распространения *, чтобы распаковать массив. Это похоже на передачу отдельных элементов массива по одному вручную.
➏ Функция-член split () вернет список ArrayList, вы можете преобразовать его в массив, а затем использовать оператор распространения, чтобы передать его в функцию vararg.
Функции расширения
В Java, если нам нужно было добавить функциональность к классу, мы могли либо добавить методы к самому классу, либо расширить его путем наследования. Функция расширения в Kotlin позволяет нам добавлять поведение к существующему классу, включая те, которые написаны на Java, без использования наследования. По сути, это позволяет нам определить функцию, которая может быть вызвана как член класса, но функция реализуется вне класса. Чтобы продемонстрировать это, давайте начнем с простого кода chanthofy, terminatorify (показан в листинге 3-9); это надуманное приложение, но оно должно дать нам основу для изучения функций расширения.
Листинг 3-9. homerify, chanthofy, terminatorify
fun main (args: Array <String>) {
 val msg = "Меня зовут Максим Децим Меридиус"
 рrintln (homerify (msg))
 рrintln (chanthofy (msg))
 рrintln (terminatorify (msg))
}
fun homerify (msg: String) = "$ msg - woohoo!"
fun chanthofy (msg: String) = "Chan, $ msg, tho"
fun terminatorify (msg: String) = "$ msg - я вернусь"

Приложение в листинге 3-9 имеет три функции, которые принимают аргумент String, добавляют к нему несколько строк и затем возвращают их обратно вызывающей стороне; это просто. Его можно использовать сам по себе, но мы, вероятно, сможем его немного консолидировать, поместив все три функции в общий класс, который станет нашим служебным классом. Такой класс может выглядеть примерно как код в листинге 3-10.
Листинг 3-10. Наш собственный класс StringUtil
fun main (args: Array <String>) {
 val msg = "Меня зовут Максим Децим Меридиус"
 val util = StringUtil ()
 рrintln (util.homerify (msg))
 рrintln (util.chanthofy (msg))
 рrintln (util.terminatorify (msg))
}
/ *
 Класс StringUtil объединяет наши три метода как функции-члены.
 Это очень распространенная практика Java
* /
class StringUtil {
 fun homerify (msg: String) = "$ msg - woohoo!"
 fun chanthofy (msg: String) = "Chan, $ msg, tho"
 fun terminatorify (msg: String) = "$ msg - я вернусь"
}

Мы уже можем использовать код из листинга 3-10; фактически, это очень распространенная практика в Java. Считается хорошей идеей объединить методы, которые в некоторой степени связаны в служебный класс (например, наш собственный класс StringUtil в листинге 3-10), хотя программисты на Java могли реализовать homerify (), chanthofy () и terminatorify () как статические методы, а не методы экземпляра, как здесь. Это мелочь, и мы можем игнорировать ее. Дело в том, что в Kotlin вместо того, чтобы писать служебный класс для наших трех методов, мы можем переписать наши методы гораздо более простым способом (см. Листинг 3-11).
Листинг 3-11. homerify как функция расширения
fun String.homerify () = "$ this - woohoo!"
Это выглядит обманчиво простым, но это действительно все, что нужно для написания функции расширения. Функции расширения вводят понятие типа получателя и объекта получателя. В листинге 3-11 тип получателя - String; это класс, в который мы хотим добавить нашу функцию расширения. Объект-получатель - это экземпляр этого типа, который в наших примерах - «Меня зовут Максимус Децимус Меридиус». Когда вы присоединяете функцию расширения к типу, например, String в нашем случае, функция расширения может ссылаться на объект-получатель с помощью ключевого слова this. Для всех намерений и целей функции расширения выглядят так же, как любая функция-член, определенная для типа получателя. Таким образом, имеет смысл, чтобы функция расширения могла ссылаться на это. В листинге 3-12 показан полный код нашего расширенного класса String.
Листинг 3-12. Расширенный строковый класс
fun main (args: Array <String>) {
 val msg = "Меня зовут Максим Децим Меридиус"
 Println (msg.homerify ())
 Println (msg.chanthofy ())
 Println (msg.terminatorify ())
}
fun String.homerify () = "$ this - woohoo!"
fun String.chanthofy () = "Чан, $ это, хотя"
fun String.terminatorify () = "$ this - я вернусь"

Вполне нормально писать служебные функции на Kotlin, но с функциями расширения в нашем распоряжении кажется более естественным их использование, потому что это увеличивает семантическую ценность нашего кода. Более естественным кажется использование синтаксиса функции расширения.
Инфиксные функции
«Инфиксная» нотация - одна из нотаций, используемых в математических и логических выражениях. Это размещение оператора между операндами (например, a + b; символ плюса «инфиксный», потому что он находится между операндами a и b). Напротив, операции могут следовать нотации «post fixed», где выражение написано так (+ a b), или они могут быть «post fixed»,
в котором наше выражение написано так (a b +).
В Kotlin функции-члены могут быть «инфиксными», что позволяет нам писать такие коды:
john.say("Hello World") (Джон говорит "Привет, мир") 
Если john - это переменная, которая указывает на объект типа Person (мы увидим определение через некоторое время) и, скажем, это метод, который принимает аргумент String, такой как «Hello World», то приведенное выше утверждение является более естественным способом. написать что-то вроде
john.say ("Привет, мир")
Чтобы начать изучение инфиксных функций, давайте начнем с реализации кодов, которые позволят нам вызывать функцию-член say (), используя традиционную точечную нотацию. А затем мы напишем коды, которые позволят нам использовать инфиксную версию. В листинге 3-13 показана классическая реализация класса Person, который мы можем вызвать, используя точечную нотацию Листинг 3-13. Класс Person без инфиксной функции
fun main (args: Array <String>) {
 val john = Person ("Джон Доу")
 john.say ("Привет, мир")
}
class Person (val name: String) {
fun say(message: String) = println("$name is saying $message") 
}

Никаких сюрпризов здесь нет, именно с такими вызовами большинство из нас набирается опыта в программировании на Java. В дальнейших комментариях это не нуждается. Теперь давайте посмотрим на реализацию, которая позволяет нам вызывать метод say «инфиксным» способом.
Листинг 3-14. Класс Person с инфиксной функцией
fun main(args: Array<String>) {
 val john = Person("John Doe")
 john say "Hello World"
}
class Person(val name : String) {
 infix fun say(message: String) = println("$name is saying $message")
}

Единственное, что вам нужно сделать, чтобы использовать функцию say () «инфиксным» способом, - это добавить ключевое слово infix в начало функции, как показано в листинге 3-14.
Сказав это, вы не можете преобразовать каждую функцию в инфикс. Функция может быть преобразована в инфиксную, только если
· это функция-член (часть класса) или функция расширения, и
· принимает ровно один параметр (только). 
Если вы думаете о лазейке вроде: «Я, наверное, мог бы определить один параметр в своей функции и использовать vararg», это не сработает. Переменные аргументы нельзя преобразовывать в инфиксные функции.
Кстати, вы не можете вызвать инфиксную функцию, используя именованные параметры, например
john say msg = "Hello World" // не сработает
Помните, что инфиксные функции принимают только один аргумент; нет смысла называть аргумент на месте вызова.
Инфиксные функции при разумном использовании позволяют создавать более интуитивно понятное кодирование, поскольку они могут скрыть логику программы за синтаксисом, подобным ключевому слову. Вы можете создать своего рода метаязык с инфиксной нотацией; только будьте осторожны, чтобы не переборщить.
Перегрузка оператора
Тема перегрузки операторов может показаться немного неуместной в главе, посвященной функциям. Но в Kotlin эта тема хорошо сочетается с обсуждением инфиксных функций из-за их общей механики реализации, как мы вскоре увидим.
Перегрузка операторов позволяет нам использовать некоторые стандартные операторы, такие как математические операторы сложения, вычитания, деления, умножения и по модулю.
Например, мы можем написать код, который позволяет использовать знак плюса, скажем, для добавления двух объектов Employee или любого другого настраиваемого типа. Рассмотрим код в листинге 3-15.
Листинг 3-15. Добавление двух объектов сотрудников
fun main (args: Array <String>) {
 var e1 = Person ("Джон Доу")
 var e2 = Person ("Джейн Доу")
 var e3 = e1 + e2
 рrintln (e3.name)
}

Каким-то образом мы интуитивно знаем, что означает утверждение e3 = e1 + e3; если мы добавляем один объект сотрудника к другому, мы должны получить объединенную информацию или состояние сотрудников e1 и e2 - если это то, что вы хотите делать в коде. С программной точки зрения мы знаем, что этот оператор не должен работать, потому что оператор сложения ничего не знает об объектах Employee, не говоря уже о том, как выполнять над ними операцию добавления. Однако в Kotlin мы можем научить оператор сложения, как добавлять два объекта Employee. Это показано в листинге 3-16.
Листинг 3-16. Класс Employee
class Employee (var name: String) {
infix operator fun plus(emp: Employee) : Employee { ➊
 this.name += "\n${emp.name}" //
 return this
 }
}

➊ Этот синтаксис очень похож на инфиксную функцию, как мы видели в предыдущем разделе. Единственное, что здесь нового - это ключевое слово operator.
Мы уже знаем, что ключевое слово infix сделает с функцией. Тот факт, что плюс является инфиксной функцией, позволяет нам писать такой код (см. Листинг 3-16):
var e1 = Employee("John Doe")
var e2 = Employee("Jane Doe")
var e3 = e1 plus e2

Однако имя функции плюс не является обычным именем функции. Это не просто еще одно название, о котором мы думали и придумали. Для Котлина это имеет особое значение.
Имя функции плюс - это фиксированный идентификатор, соответствующий математическому оператору +. И когда это специальное имя функции сочетается с ключевыми словами infix и operator, это позволяет нам писать такие коды
var e3 = e1 + e2
Kotlin позволяет нам переопределять большое количество операторов, и это не ограничивается только математическими операторами. В таблице 3-1 показаны некоторые из них. Это не полный список, но он должен дать вам представление о том, насколько вы можете перегрузить.
Таблица 3-1. Операторы, которые могут быть перегружены, и их соответствующие имена функции
	Оператор
	Имя функции
	Выражение
	Переведенное в

	+
	Plus
	a + b
	a.plus (b)

	-
	Minus
	a - b
	a.minus(b)

	/
	Div
	a / b
	a.div (b)

	*
	Times
	a * b
	a.times(b)

	..
	rangeTo
	a .. b
	a.rangeTo (b)

	++
	inc
	a ++
	a.inc ()

	--
	dec
	a--
	a.dec ()

	+ =
	plusAssign
	a + = b
	a.plusAssign (b)

	- +
	minusAssign
	a - = b
	a.minusAssign (b)

	/ =
	divAssign
	a / = b
	a.divAssign (b)

	* =
	timesAssign
	a * = b
	a.timesAssign (b)

	% =
	remAssign
	a% = b
	a.remAssign (b)

	>
	compareTo
	a > b
	a.compareTo (b)> 0

	<
	compareTo
	a < b
	a.conpareTo (b) < 0

	> =
	compareTo
	a > = b
	a.conpareTo (b)> = 0

	<=
	compareTo
	a <= b
	a.conpareTo (b) <= 0



Перегрузка операторов - это особый случай полиморфизма, когда разные операторы, например, математические, могут иметь разные реализации в зависимости от аргументов (или типа операндов), как мы видели в листингах 3-14 и 3-15. Использование перегрузки операторов, если все сделано правильно, может создавать коды, которые легче понять, поскольку они написаны на языке бизнес-или предметной области.
У них более высокая смысловая ценность.
Kotlin - не первый язык, в котором реализована перегрузка операторов. Раньше это делали такие языки, как C ++. Следует отметить, что использование или, точнее, чрезмерное использование и злоупотребление перегрузкой операторов вызвало много критики. Именно потому, что, если вы можете переопределить действия и поведение известных операторов, таких как плюс, минус и т. д., это может привести к громоздкому коду. Поэтому проявляйте благоразумие, когда идете по пути перегрузки оператора.
Краткое содержание главы
• Функции Kotlin можно писать в трех местах. Как и в Java, они могут быть членами класса, но также могут быть написаны как конструкция верхнего уровня. В-третьих, они могут быть встроены в другие функции - мы не углублялись в локальные функции в этой главе, но мы рассмотрим эту тему более подробно в следующих главах.
• Kotlin упрощает объявление и вызов функций, добавляя поддержку для параметров по умолчанию, именованных параметров и даже переменной количество аргументов. Комбинация позиционных, именованных и параметров по умолчанию позволяют нам отказаться от чрезмерного использования параметрической перегрузки, как в Java.
• Функции расширения предлагают новый способ расширить поведение существующих типов. Мы можем добавить дополнительное поведение вне класса, но мы можем вызвать функции расширения, как если бы она была встроена прямо в определение класса.
• Инфикс-функции и инфикс-операторы позволяют нам увеличивать семантические значения наших кодов, позволяя нам писать вызовы функций без использования точечной записи. Допуская инфиксные вызовы функций, результирующий код становится более выразительным и приближенным к языку предметной области.
В следующей главе мы рассмотрим OOP-сторону Kotlin. Мы узнаем, как Kotlin работает с классами, конструкторами и интерфейсами. Мы также узнаем о новых классах данных в Kotlin.
